论文标题

野外的基于可穿戴的瞬时压力检测中的半监督学习和数据增强

Semi-Supervised Learning and Data Augmentation in Wearable-based Momentary Stress Detection in the Wild

论文作者

Yu, Han, Sano, Akane

论文摘要

从可穿戴或移动传感器收集的生理和行为数据已用于估计自我报告的应力水平。由于应力注释通常依赖于研究期间的自我报告,因此有限的标记数据可能是开发准确和广义的应力预测模型的障碍。另一方面,传感器可以在没有注释的情况下连续捕获信号。这项工作调查了利用未标记的可穿戴传感器数据以在野外进行压力检测。我们首先在生理和行为数据上应用了数据增强技术,以提高监督压力检测模型的鲁棒性。使用具有积极选择的未标记序列的自动编码器,我们对监督模型结构进行了预训练,以利用从未标记的样本中学到的信息。然后,我们开发了一个半监督的学习框架,以利用未标记的数据序列。我们将数据增强技术与一致性正则化结合在一起,该技术基于增强和原始未标记的数据来实施预测输出的一致性。我们使用在野外收集的三个可穿戴/移动传感器数据集验证了这些方法。我们的结果表明,与基线监督的学习模型相比,评估的数据集将所提出的方法相结合的压力分类性能提高了7.7%至13.8%。

Physiological and behavioral data collected from wearable or mobile sensors have been used to estimate self-reported stress levels. Since the stress annotation usually relies on self-reports during the study, a limited amount of labeled data can be an obstacle in developing accurate and generalized stress predicting models. On the other hand, the sensors can continuously capture signals without annotations. This work investigates leveraging unlabeled wearable sensor data for stress detection in the wild. We first applied data augmentation techniques on the physiological and behavioral data to improve the robustness of supervised stress detection models. Using an auto-encoder with actively selected unlabeled sequences, we pre-trained the supervised model structure to leverage the information learned from unlabeled samples. Then, we developed a semi-supervised learning framework to leverage the unlabeled data sequences. We combined data augmentation techniques with consistency regularization, which enforces the consistency of prediction output based on augmented and original unlabeled data. We validated these methods using three wearable/mobile sensor datasets collected in the wild. Our results showed that combining the proposed methods improved stress classification performance by 7.7% to 13.8% on the evaluated datasets, compared to the baseline supervised learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源