论文标题
图形产品的奇数
Odd Colourings of Graph Products
论文作者
论文摘要
奇数着色编号是Petruševski和škrekovski引入的新图参数。在本说明中,我们表明具有所谓产品结构的图具有有限的奇数色数。通过$ k $ - 平面图的产品结构的已知结果,这意味着$ k $ - 平面图具有有限的奇数彩色数字,它回答了Cranston,Lafferty和Song的问题。
The odd colouring number is a new graph parameter introduced by Petruševski and Škrekovski. In this note, we show that graphs with so called product structure have bounded odd-colouring number. By known results on the product structure of $k$-planar graphs, this implies that $k$-planar graphs have bounded odd-colouring number, which answers a question of Cranston, Lafferty, and Song.