论文标题

考虑输入不确定性的强大多目标贝叶斯优化框架

A Robust Multi-Objective Bayesian Optimization Framework Considering Input Uncertainty

论文作者

Qing, J., Couckuyt, I., Dhaene, T.

论文摘要

贝叶斯优化是对昂贵目标功能进行数据有效优化的流行工具。在工程设计等现实生活应用中,设计师通常希望考虑多个目标以及输入不确定性,以找​​到一组健壮的解决方案。虽然这是单目标贝叶斯优化中的一个活跃主题,但在多目标情况下,它较少研究。我们引入了一个新型的贝叶斯优化框架,以考虑输入不确定性有效地执行多目标优化。我们提出了一个强大的高斯工艺模型,以推断贝叶斯风险标准以量化鲁棒性,并开发了一个两阶段的贝叶斯优化过程来搜索稳健的帕累托边境。完整的框架支持输入不确定性的各种分布,并充分利用并行计算。我们通过数值基准证明了框架的有效性。

Bayesian optimization is a popular tool for data-efficient optimization of expensive objective functions. In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account to find a set of robust solutions. While this is an active topic in single-objective Bayesian optimization, it is less investigated in the multi-objective case. We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty. We propose a robust Gaussian Process model to infer the Bayes risk criterion to quantify robustness, and we develop a two-stage Bayesian optimization process to search for a robust Pareto frontier. The complete framework supports various distributions of the input uncertainty and takes full advantage of parallel computing. We demonstrate the effectiveness of the framework through numerical benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源