论文标题
$^{32} $ mg的束内$γ$ -Ray光谱通过直接反应
In-beam $γ$-ray spectroscopy of $^{32}$Mg via direct reactions
论文作者
论文摘要
背景:核$^{32} $ mg($ n = 20 $和$ z = 12 $)在所谓的“反转岛”中起着核心作用,在那里,基于$ sd $ shell中子的中子被提升为$ fp $ shell neutons the shell shell gap的$ fp $ shell Orbitals跨越了整个壳体,从而导致了Canon canonical Magic $ n = 20 $ n = 20 $ n = 20 $ n = 20。目的:这项工作的主要目标是扩展$^{32} $ mg的级别方案,向激发态提供自旋 - 平性分配,并通过与理论计算进行比较,讨论每个状态的显微镜结构。方法:使用两个直接反应探针进行$^{32} $ mg的束内$γ$ -Ray光谱,即$^{33} $ mg($^{34} $ si)上的两个直接反应探针,单中性(两proton)敲除反应。从实验数据中提取了最终国家的独家横截面和平行动量分布,并将其与基于Eikonal的反应模型计算与壳模型重叠函数相结合。结果:构建了$^{32} $ mg的一个显着更新的水平方案,因此构建了一个显着更新的水平方案,该反应的显着更新了水平的方案,该方案表现出负性入侵者和正态正常状态。实验结果面临着四个不同的核结构模型。结论:在其中一些模型中,$^{32} $ mg的不同方面以及向反转岛的过渡得到了很好的描述。但是,无法解释的差异仍然存在,即使在这些最先进的理论方法的帮助下,该关键核的结构尚未完全捕获。
Background: The nucleus $^{32}$Mg ($N=20$ and $Z=12$) plays a central role in the so-called "island of inversion" where in the ground states $sd$-shell neutrons are promoted to the $fp$-shell orbitals across the shell gap, resulting in the disappearance of the canonical neutron magic number $N=20$. Purpose: The primary goals of this work are to extend the level scheme of $^{32}$Mg, provide spin-parity assignments to excited states, and discuss the microscopic structure of each state through comparisons with theoretical calculations. Method: In-beam $γ$-ray spectroscopy of $^{32}$Mg was performed using two direct-reaction probes, one-neutron (two-proton) knockout reactions on $^{33}$Mg ($^{34}$Si). Final-state exclusive cross sections and parallel momentum distributions were extracted from the experimental data and compared with eikonal-based reaction model calculations combined with shell-model overlap functions. Results: Owing to the remarkable selectivity of the one-neutron and two-proton knockout reactions, a significantly updated level scheme for $^{32}$Mg, which exhibits negative-parity intruder and positive-parity normal states, was constructed. The experimental results were confronted with four different nuclear structure models. Conclusions: In some of these models, different aspects of $^{32}$Mg and the transition into the island of inversion are well described. However, unexplained discrepancies remain, and even with the help of these state-of-the-art theoretical approaches, the structure of this key nucleus is not yet fully captured.