论文标题

纵向移动健康数据的探索性隐藏马尔可夫因子模型:应用于创伤后神经精神后遗症的不良后遗症

Exploratory Hidden Markov Factor Models for Longitudinal Mobile Health Data: Application to Adverse Posttraumatic Neuropsychiatric Sequelae

论文作者

Ge, Lin, An, Xinming, Zeng, Donglin, McLean, Samuel, Kessler, Ronald, Song, Rui

论文摘要

创伤后的不良后神经精神后遗症(APN)在外伤后很常见,数百万美国人在创伤后,导致创伤幸存者和社会造成了巨大的负担。尽管在过去几十年中对APN进行了许多研究,但由于几个独特的挑战,理解潜在的神经生物学机制的进展有限。这些挑战之一是依赖主观自我报告措施来评估APN,这很容易导致测量错误和偏见(例如,召回偏见)。为了减轻此问题,在本文中,我们研究了利用客观纵向移动设备数据识别均匀的APN状态的潜力,并研究了创伤暴露后APN的动态过渡和潜在风险因素。为了应对纵向移动设备数据带来的特定挑战,我们开发了探索性隐藏的马尔可夫因子模型,并为参数估计设计了稳定的期望最大化算法。进行了仿真研究,以评估参数估计和模型选择的性能。最后,为了证明该方法的实际实用性,我们将其应用于从对创伤后恢复(Aurora)研究的恢复的理解中收集的移动设备数据。

Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among veterans and millions of Americans after traumatic exposures, resulting in substantial burdens for trauma survivors and society. Despite numerous studies conducted on APNS over the past decades, there has been limited progress in understanding the underlying neurobiological mechanisms due to several unique challenges. One of these challenges is the reliance on subjective self-report measures to assess APNS, which can easily result in measurement errors and biases (e.g., recall bias). To mitigate this issue, in this paper, we investigate the potential of leveraging the objective longitudinal mobile device data to identify homogeneous APNS states and study the dynamic transitions and potential risk factors of APNS after trauma exposure. To handle specific challenges posed by longitudinal mobile device data, we developed exploratory hidden Markov factor models and designed a Stabilized Expectation-Maximization algorithm for parameter estimation. Simulation studies were conducted to evaluate the performance of parameter estimation and model selection. Finally, to demonstrate the practical utility of the method, we applied it to mobile device data collected from the Advancing Understanding of RecOvery afteR traumA (AURORA) study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源