论文标题

$(d-2)$ - 泄漏的$ q_d $和$ \ ell $ -leaky强迫$ gp的$(d-2)$(n,1)$的上限

Upper bound for the $(d-2)$-leaky forcing number of $Q_d$ and $\ell$-leaky forcing number of $GP(n,1)$

论文作者

Herrman, Rebekah

论文摘要

漏水是最近引入的零效率变体,已针对包括路径,循环,车轮,网格和树木在内的图形家庭进行了研究。在本文中,我们扩展了先前的结果,以表明$(d-2)$ - 泄漏的$ q_d $的$(d-2)$ - 最多是$ 2^{d-1} $。我们还研究了一个有关最低$ \ ell $ leaky-forpcucting套件的关系与图形$ g $的最小零福利集之间的关系。

Leaky-forcing is a recently introduced variant of zero-forcing that has been studied for families of graphs including paths, cycles, wheels, grids, and trees. In this paper, we extend previous results on the leaky forcing number of the d-dimensional hypercube, $Q_d$, to show that the $(d-2)$-leaky forcing number of $Q_d$ is at most $2^{d-1}$. We also examine a question about the relationship between the size of a minimum $\ell$-leaky-forcing set and a minimum zero-forcing set for a graph $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源