论文标题

Hurewicz的轻度版本涵盖财产和Hurewicz测量零空间

Mildly version of Hurewicz Basis covering property and Hurewicz measure zero spaces

论文作者

Bhardwaj, Manoj, Osipov, Alexander V.

论文摘要

在本文中,我们介绍了由Babinkostova,Kočinac和Scheepers研究的Hurewicz基础的温和版本。如果每个序列$ \ langle \ nangcal \ Mathcal {u} _n:n \ inω\ rangle $ inω\ rangle $,则有一个$ x $的$ x $的$ x $的空间$ x $具有温和的hurewicz属性。 $ \ MATHCAL {V} _n $是$ \ Mathcal {u} _n $的有限子集,对于x $中的每个$ x \,$ x $属于$ \ bigCup \ bigCup \ mathcal {v} _n $,对于所有$ n $ n $ n $来说,属于所有$ n $。然后,我们通过轻度赫里维兹的基础特性和轻度赫尔维奇的特性表征了轻度的纯种特性,可在可元空间中测量零性质。

In this paper, we introduced the mildly version of the Hurewicz basis covering property, studied by Babinkostova, Kočinac, and Scheepers. A space $X$ is said to have mildly-Hurewicz property if for each sequence $\langle \mathcal{U}_n : n\in ω\rangle$ of clopen covers of $X$ there is a sequence $\langle \mathcal{V}_n : n\in ω\rangle$ such that for each $n$, $\mathcal{V}_n$ is a finite subset of $\mathcal{U}_n$ and for each $x\in X$, $x$ belongs to $\bigcup\mathcal{V}_n$ for all but finitely many $n$. Then we characterized mildly-Hurewicz property by mildly-Hurewicz Basis property and mildly-Hurewicz measure zero property for metrizable spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源