论文标题
$ r [x,y,z] $的本地nilpotent $ r $ derivations的一些结果
Some results on homogeneous locally nilpotent $R$-derivations on $R[X,Y,Z]$
论文作者
论文摘要
让$ k $为特征零和$ r $ a $ k $ - 代数的字段。在本文中,我们研究了$ r [x,y,z] $ on标准权重$(1,1,1)$的同质$ r $ -lnds $ d $。我们表明,当$ r $是PID时,如果$°(d)\ leqslant 3 $,则最多可以是$ 2 $。结果,我们在$ k^{[4]} $上获得一定类别的同质LND,其内核为$ k^{[3]} $。此外,当$ r $是一个Dedekind域时,如果$°(d)\ leqslant 3 $,我们将以$ \ ker(d)$的最低发电机数量为$ \ ker(d)$的最低限制。
Let $k$ be a field of characteristic zero and $R$ a $k$-algebra. In this paper we study homogeneous $R$-lnds $D$ on $R[X,Y,Z]$ with respect to the standard weights $(1,1,1)$. We show that when $R$ is a PID, $rank(D)$ can be at most $2$ if $°(D) \leqslant 3$. As a consequence we obtain a certain class of homogeneous lnds on $k^{[4]}$ whose kernel is $k^{[3]}$. Further when $R$ is a Dedekind domain, we give a bound for minimum number of generators of $\ker(D)$ as an $R$-algebra if $°(D) \leqslant 3$.