论文标题
电子能量损耗光谱法中2D材料中的空间分辨带隙和介电函数
Spatially-Resolved Band Gap and Dielectric Function in 2D Materials from Electron Energy Loss Spectroscopy
论文作者
论文摘要
二维(2D)材料的电子特性敏感地取决于基础原子排列,以至于单层水平。在这里,我们提出了一种新的策略,以确定2D材料中的带隙和复杂的介电函数,以达到几纳米的空间分辨率。这种方法基于在粒子物理学中开发的机器学习技术,并使得从电子损失光谱(EELS)的光谱图像的自动处理和解释成为可能。单个光谱被分类为厚度的函数,$ k $ - 均值聚类,然后用于训练零损失峰背景的深度学习模型。作为概念验证,我们评估了Inse薄片和多型WS $ _2 $纳米流量的带隙和介电功能,并将这些电气性能与局部厚度相关联。我们的灵活方法可以推广到其他纳米结构材料和更高维度的光谱镜头,并作为开源Eelsfitter框架的新版本提供。
The electronic properties of two-dimensional (2D) materials depend sensitively on the underlying atomic arrangement down to the monolayer level. Here we present a novel strategy for the determination of the band gap and complex dielectric function in 2D materials achieving a spatial resolution down to a few nanometers. This approach is based on machine learning techniques developed in particle physics and makes possible the automated processing and interpretation of spectral images from electron energy-loss spectroscopy (EELS). Individual spectra are classified as a function of the thickness with $K$-means clustering and then used to train a deep-learning model of the zero-loss peak background. As a proof-of-concept we assess the band gap and dielectric function of InSe flakes and polytypic WS$_2$ nanoflowers, and correlate these electrical properties with the local thickness. Our flexible approach is generalizable to other nanostructured materials and to higher-dimensional spectroscopies, and is made available as a new release of the open-source EELSfitter framework.