论文标题

家族性推断:对一个中心家族的假设的测试

Familial inference: tests for hypotheses on a family of centres

论文作者

Thompson, Ryan, Forbes, Catherine S., MacEachern, Steven N., Peruggia, Mario

论文摘要

统计假设是科学假设的翻译为有关其中心的一个或多个分布的陈述。评估中心统计假设的测试隐含地假设一个特定的中心,例如平均值或中位数。但是,科学假设并不总是指定特定的中心。这种歧义使科学理论与统计实践之间存在差距的可能性可能导致拒绝真正的零。面对许多科学学科中的可复制性危机,这种重要的结果令人担忧。本文没有测试单个中心,而是提议测试一个合理的中心家族,例如由Huber损失函数(Huber家族)引起的。家庭中的每个中心都会产生一个测试问题,由此产生的假设家族构成了家族性假设。设计了一种贝叶斯非参数程序来检验家族假设,这是由一种新型的路径优化常规实现的,以适合Huber家族。在理论上和实验中证明了新测试的有利特性。心理学的两个例子是现实世界中的案例研究。

Statistical hypotheses are translations of scientific hypotheses into statements about one or more distributions, often concerning their centre. Tests that assess statistical hypotheses of centre implicitly assume a specific centre, e.g., the mean or median. Yet, scientific hypotheses do not always specify a particular centre. This ambiguity leaves the possibility for a gap between scientific theory and statistical practice that can lead to rejection of a true null. In the face of replicability crises in many scientific disciplines, significant results of this kind are concerning. Rather than testing a single centre, this paper proposes testing a family of plausible centres, such as that induced by the Huber loss function (the Huber family). Each centre in the family generates a testing problem, and the resulting family of hypotheses constitutes a familial hypothesis. A Bayesian nonparametric procedure is devised to test familial hypotheses, enabled by a novel pathwise optimization routine to fit the Huber family. The favourable properties of the new test are demonstrated theoretically and experimentally. Two examples from psychology serve as real-world case studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源