论文标题

pinsker $σ$ -Algebra角色和卑鄙的li-yorke混乱

Pinsker $σ$-algebra Character and mean Li-Yorke chaos

论文作者

Liu, Chunlin, Xiao, Rongzhong, Xu, Leiye

论文摘要

令$ g $为无限的可计数委员会。对于任何$ g $ action在紧凑型公制$ x $上的任何$ g $ action,证明,对于任何序列$(g_n)_ {n \ ge 1} $,由$ \ lim_ {n \ to \ lim_ {n \ to \ for \ for \ infty} | g_n | g_n | g_n | g_n | pinskerge $ -pinsker $ -albra组成的$ g $的非空的有限子集组成$(g_n)_ {n \ ge 1} $。结果,对于一类$ g $的动力学系统,积极的拓扑熵意味着沿着一类序列的li-yorke混乱,这些序列由$ g $的非空的有限子集组成。

Let $G$ be an infinite countable discrete amenable group. For any $G$-action on a compact metric space $X$, it is proved that for any sequence $(G_n)_{n\ge 1}$ consisting of non-empty finite subsets of $G$ with $\lim_{n\to \infty}|G_n|=\infty$, Pinsker $σ$-algebra is a characteristic factor for $(G_n)_{n\ge 1}$. As a consequence, for a class of $G$-topological dynamical systems, positive topological entropy implies mean Li-Yorke chaos along a class of sequences consisting of non-empty finite subsets of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源