论文标题
原子频率梳量子记忆的多模能力
Multimode capacity of atomic-frequency comb quantum memories
论文作者
论文摘要
基于整体的量子记忆是开发多路复用量子中继器的关键,能够克服长距离的有限通信时间施加的内在速率限制。稀土离子掺杂晶体是高度多模量子记忆的主要候选物,其中时间,频率和空间多路复用可以利用以存储多种模式。在这种情况下,原子频率梳子(AFC)量子存储器提供了较大的时间多模能力,可以轻松地将其与频率和空间多样化结合。在本文中,我们得出了理论公式,用于量化基于AFC的记忆的时间模型能力,对于具有固定存储时间的光学记忆和带有较长存储时间的旋转波和旋转波的记忆,并且按需读出。时间多模能力在关键内存参数中表达,例如AFC带宽,固定延迟存储时间,内存效率和控制场Rabi频率。在这个理论框架内分析了Europium和Prosodymium掺杂的Y $ _5 $ _5 $的当前实验,并考虑了这些材料的较高时间容量的前景。此外,我们考虑了光谱和空间多路复用以进一步增加模式容量的可能性,并给出了两个稀有earh离子的示例。
Ensemble-based quantum memories are key to developing multiplexed quantum repeaters, able to overcome the intrinsic rate limitation imposed by finite communication times over long distances. Rare-earth ion doped crystals are main candidates for highly multimode quantum memories, where time, frequency and spatial multiplexing can be exploited to store multiple modes. In this context the atomic frequency comb (AFC) quantum memory provides large temporal multimode capacity, which can readily be combined with multiplexing in frequency and space. In this article, we derive theoretical formulas for quantifying the temporal multimode capacity of AFC-based memories, for both optical memories with fixed storage time and spin-wave memories with longer storage times and on-demand read out. The temporal multimode capacity is expressed in key memory parameters, such as AFC bandwidth, fixed-delay storage time, memory efficiency, and control field Rabi frequency. Current experiments in europium- and praseodymium-doped Y$_2$SiO$_5$ are analyzed within this theoretical framework, and prospects for higher temporal capacity in these materials are considered. In addition we consider the possibility of spectral and spatial multiplexing to further increase the mode capacity, with examples given for both rare earh ions.