论文标题
一种新型的四场混合方法,用于使用有限元外观实施的Kirchhoff杆
A novel four-field mixed variational approach to Kirchhoff rods implemented with finite element exterior calculus
论文作者
论文摘要
提出了一个四场混合变异原理,用于对Kirchhoff杆进行大型变形分析,并具有$ C^0 $混合Fe近似值。该方法背后的核心思想是引入一个独立指定的独立指定的单个参数(中心线)和一个单独的单参数框架(Cartan移动框架)。曲线的曲率和扭转与相邻帧的相对旋转有关。然后,使用Lagrange乘法器(扮演截面力的作用)在解决方案步骤上执行框架和中心线之间的关系。众所周知的框架(例如Frenet-Serret)仅使用中心线来定义,这需要高阶平滑度以进行中心线近似。将框架从基本曲线的位置向量解耦导致对独立于位置信息的扭转和曲率的描述,从而允许更简单的插值。然后以外观演算的语言施放这种方法。在此框架中,应变能可以解释为导致自然力 - 置换(速度)配对的差分形式。我们提出的四场混合变分原理具有框架,差分形式和位置向量作为输入参数。虽然位置向量是线性插值的,但将框架插值为旋转组上的分段测量学。同样,一致的插值方案也被采用以获得其他差分形式的有限维近似值。使用这些离散近似值,列出了离散的混合变分原理,然后在数值上极端化。然后将离散近似应用于基准问题,我们的数值研究揭示了该方法的令人印象深刻的性能,而没有数值不稳定性或锁定。
A four-field mixed variational principle is proposed for large deformation analysis of Kirchhoff rods with a $C^0$ mixed FE approximations. The core idea behind the approach is to introduce a one-parameter family of points (the centerline) and a separate one-parameter family of orthonormal frames (the Cartan moving frame) that are specified independently. The curvature and torsion of the curve are related to the relative rotation of neighboring frames. The relationship between the frame and the centerline is then enforced at the solution step using a Lagrange multiplier (which plays the role of section force). Well known frames like the Frenet-Serret are defined only using the centerline, which demands higher-order smoothness for the centerline approximation. Decoupling the frame from the position vector of the base curve leads to a description of torsion and curvature that is independent of the position information, thus allowing for simpler interpolations. This approach is then cast in the language of exterior calculus. In this framework, the strain energy may be interpreted as a differential form leading to the natural force-displacement (velocity) pairing. The four-field mixed variational principle we propose has frame, differential forms, and position vector as input arguments. While the position vector is interpolated linearly, the frames are interpolated as piecewise geodesics on the rotation group. Similarly, consistent interpolation schemes are also adopted to obtain finite dimensional approximations for other differential forms aswell. Using these discrete approximations, a discrete mixed variational principle is laid out which is then numerically extremized. The discrete approximation is then applied to benchmark problems, our numerical studies reveal an impressive performance of the proposed method without numerical instabilities or locking.