论文标题

非自主耦合系统的平滑线性化

Smooth Linearization of Nonautonomous Coupled Systems

论文作者

Backes, Lucas, Dragičević, Davor

论文摘要

在与帕尔默的联合合作中,我们已经制定了足够的条件,在该条件下,$ h_n(x,y)的形式存在连续且可逆的转换,采用耦合系统的解决方案\ begin \ begin {equation*} x_ {n+1} = a_nx_n+f_n+f_n+f_n(x_n,y_n,y_n),\ quad y__n(y_n),y_n y_ y _ = n+1} \ end {equation*}上关联的部分线性化的未耦合系统\ begin \ begin {equation*} x_ {n+1} = a_nx_n,\ quad y__ {n+1} = g_n(y__n)。 \ end {equation*}在当前的工作中,我们更进一步,并提供了$ h_n $和$ h_n^{ - 1} $的条件,在其中一个变量中,$ x $和$ y $是平滑的。 我们强调的是,我们的条件是一种通用形式,不涉及对大多数相关作品中存在的线性部分的任何形式的二分法,非共振或光谱差距假设。

In a joint work with Palmer we have formulated sufficient conditions under which there exist continuous and invertible transformations of the form $H_n(x,y)$ taking solutions of a coupled system \begin{equation*} x_{n+1} =A_nx_n+f_n(x_n, y_n), \quad y_{n+1}=g_n( y_n), \end{equation*} onto the solutions of the associated partially linearized uncoupled system \begin{equation*} x_{n+1} =A_nx_n, \quad y_{n+1}=g_n( y_n). \end{equation*} In the present work we go one step further and provide conditions under which $H_n$ and $H_n^{-1}$ are smooth in one of the variables $x$ and $y$. We emphasise that our conditions are of a general form and do not involve any kind of dichotomy, nonresonance or spectral gap assumptions for the linear part which are present on most of the related works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源