论文标题
从量子概率的角度观察到的母大学随机过程的一些高维限制
On some high-dimensional limits of matricial stochastic processes seen from a quantum probability perspective
论文作者
论文摘要
我们将布朗尼运动的阻滞融合的结果概括为统一的$ u(nm)$,以在单一的双组$ u \ langle n \ rangle $上进行量子lévy过程,当$ m \ m \ rightarrow \ rightarrow \ rightarrow \ rangle \ rangle $ \ rightarrow \ rightarrow \ rightarrow \ iffty $,是由作者在上一篇论文中获得的,通过向上纸上的小组$ $ o(nm)$ o(nm)在上一篇论文中获得。 $ sp(nm)$还将块的收敛到同一量子lévy过程。
We generalize the result of block-wise convergence of the Brownian motion on the unitary group $U(nm)$ towards a quantum Lévy process on the unitary dual group $U\langle n\rangle$ when $m\rightarrow\infty$, obtained by the author in a previous paper, by showing that the Brownian motions on the orthogonal group $O(nm)$ and the symplectic group $Sp(nm)$ also converge block-wise to this same quantum Lévy process.