论文标题

挤压结

Squeezed Knots

论文作者

Feller, Peter, Lewark, Lukas, Lobb, Andrew

论文摘要

挤压结是那些作为正圆环和负圆环之间的定向平滑恢复属的切片。我们表明,这类结很大,并讨论了如何阻塞挤压。最有效的障碍物似乎来自量子结的不变性,特别是由于Lipshitz-Sarkar和Sarkar-Scaduto-Stoffregen,包括Rasmussen不变性的改进,涉及Khovanov同源性稳定的共同体学操作。

Squeezed knots are those knots that appear as slices of genus-minimizing oriented smooth cobordisms between positive and negative torus knots. We show that this class of knots is large and discuss how to obstruct squeezedness. The most effective obstructions appear to come from quantum knot invariants, notably including refinements of the Rasmussen invariant due to Lipshitz-Sarkar and Sarkar-Scaduto-Stoffregen involving stable cohomology operations on Khovanov homology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源