论文标题

与双层神经网络相比,神经网络和模糊逻辑决策的整合在每日露点温度中的模拟中

Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature

论文作者

Zhang, Guodao, Band, Shahab S., Ardabili, Sina, Chau, Kwok-Wing, Mosavi, Amir

论文摘要

在这项研究中,使用数据驱动的方法模拟了露点温度(DPT)。自适应神经模糊推理系统(ANFIS)被用作数据驱动技术,以预测East Azerbaijan的Tabriz的此参数。各种输入模式,即t min,t max和t的平均值用于训练架构,而DPT是模型的输出。研究结果表明,通常,ANFIS方法能够识别具有高度准确性的数据模式。但是,该方法表明,通过添加其他功能,处理时间和计算机资源可能会大大增加。根据结果​​,如果包括新功能,迭代和计算资源的数量可能会发生巨大变化。结果,必须在方法框架内优化调整参数。研究结果表明,通过数据驱动技术(机器学习方法)和观察到的数据之间的结果有很高的一致性。使用此预测工具包,DPT​​可以仅基于Babriz的温度分布来充分预测。这种建模对于在各个站点预测DPT非常有希望。此外,本研究在各种尺度上彻底比较了双层神经网络(BNN)和ANFIS模型。尽管ANFIS模型对于几乎所有的成员函数都非常稳定,但BNN模型对该量表因子高度敏感以预测DPT。

In this research, dew point temperature (DPT) is simulated using the data-driven approach. Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized as a data-driven technique to forecast this parameter at Tabriz in East Azerbaijan. Various input patterns, namely T min, T max, and T mean, are utilized for training the architecture whilst DPT is the model's output. The findings indicate that, in general, ANFIS method is capable of identifying data patterns with a high degree of accuracy. However, the approach demonstrates that processing time and computer resources may substantially increase by adding additional functions. Based on the results, the number of iterations and computing resources might change dramatically if new functionalities are included. As a result, tuning parameters have to be optimized inside the method framework. The findings demonstrate a high agreement between results by the data-driven technique (machine learning method) and the observed data. Using this prediction toolkit, DPT can be adequately forecasted solely based on the temperature distribution of Tabriz. This kind of modeling is extremely promising for predicting DPT at various sites. Besides, this study thoroughly compares the Bilayered Neural Network (BNN) and ANFIS models on various scales. Whilst the ANFIS model is extremely stable for almost all numbers of membership functions, the BNN model is highly sensitive to this scale factor to predict DPT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源