论文标题

没有原始测试的随机素数

Random primes without primality testing

论文作者

Giorgi, Pascal, Grenet, Bruno, Cray, Armelle Perret du, Roche, Daniel S.

论文摘要

大量算法要求整数上的计算模拟随机选择的大序。在某些情况下,选择随机素数的准立方体复杂性可以主导总运行时间。我们提出了用于“动态评估”的经典D5算法的新变体,该变体应用于随机选择的(复合)整数。与过去已用于在字段的直接乘积上计算的D5原理不同,我们的方法更简单,因为它仅需要在任何模量拆分后遵循单个路径。我们提出的转换可以应用于代数RAM模型中的任何算法,甚至允许随机化。所得转换的算法避免了任何原始测试,并且将具有恒定的正概率,其结果与原始计算模量随机选择的素数相同。作为应用程序,我们演示了如何在未知整数多项式中计算准整数多项式中的确切数量。我们还展示了如何将相同的算法转换技术用于计算有限场上的模量随机不可删除多项式。

Numerous algorithms call for computation over the integers modulo a randomly-chosen large prime. In some cases, the quasi-cubic complexity of selecting a random prime can dominate the total running time. We propose a new variant of the classic D5 algorithm for "dynamic evaluation", applied to a randomly-chosen (composite) integer. Unlike the D5 principle which has been used in the past to compute over a direct product of fields, our method is simpler as it only requires following a single path after any modulus splits. The transformation we propose can apply to any algorithm in the algebraic RAM model, even allowing randomization. The resulting transformed algorithm avoids any primality tests and will, with constant positive probability, have the same result as the original computation modulo a randomly-chosen prime. As an application, we demonstrate how to compute the exact number of nonzero terms in an unknown integer polynomial in quasi-linear time. We also show how the same algorithmic transformation technique can be used for computing modulo random irreducible polynomials over a finite field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源