论文标题

选择性独立性和$ h $ - 完美的树强迫概念

Selective Independence and $h$-Perfect Tree Forcing Notions

论文作者

Switzer, Corey Bacal

论文摘要

概括了麻袋强迫的证据,我们表明,$ h $完美的树强迫金斯特恩,犹大和谢拉(Shelah)提出的概念即使迭代时,也是选择性独立家庭。结果,我们获得了$ \ mathfrak {i} = \ Mathfrak {u} <\ m atrm {non}(\ Mathcal n)= \ Mathrm {cof}(\ Mathcal n)$ and $ \\ Mathfrak {i} <\ Mathfrak}的新证据\ Mathrm {Cof}(\ Mathcal N)$以及一些相关的结果。

Generalizing the proof for Sacks forcing, we show that the $h$-perfect tree forcing notions introduced by Goldstern, Judah and Shelah preserve selective independent families even when iterated. As a result we obtain new proofs of the consistency of $\mathfrak{i} = \mathfrak{u} < \mathrm{non} (\mathcal N) = \mathrm{cof} (\mathcal N)$ and $\mathfrak{i} < \mathfrak{u} = \mathrm{non} (\mathcal N) = \mathrm{cof}( \mathcal N)$ as well as some related results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源