论文标题
场景参数生成方法和方案代表性指标,用于基于方案的自动化车辆评估
Scenario Parameter Generation Method and Scenario Representativeness Metric for Scenario-Based Assessment of Automated Vehicles
论文作者
论文摘要
由于AV的复杂操作域,自动化车辆(AV)的评估方法的开发对于实现自动驾驶技术的部署至关重要。一个候选人是基于方案的评估,其中测试案例是从从驾驶数据获得的现实世界道路交通情况中得出的。由于可能的场景种类繁多,因此仅使用观察到的方案进行评估是不够的。因此,必须采用生成其他方案的方法。 我们的贡献是双重的。首先,我们提出了一种方法来确定在足够程度上描述场景的参数,而不依赖于表征场景的参数的强有力的假设。通过估计这些参数的概率密度函数(PDF),可以生成实际参数值。其次,我们介绍了基于Wasserstein距离的场景代表性(SR)度量,该距离在涵盖现实世界中发现的实际品种的同时,它量化了具有生成参数值的场景在多大程度上代表了现实世界情景。 我们提出的方法与依赖于方案参数化和PDF估计的假设的方法的比较表明,所提出的方法可以自动确定最佳方案参数化和PDF估计。此外,我们证明我们的SR度量可用于选择最能描述场景的参数(数量)。提出的方法是有希望的,因为参数化和PDF估计可以直接应用于已经可用的重要性抽样策略来加速AV的评估。
The development of assessment methods for the performance of Automated Vehicles (AVs) is essential to enable the deployment of automated driving technologies, due to the complex operational domain of AVs. One candidate is scenario-based assessment, in which test cases are derived from real-world road traffic scenarios obtained from driving data. Because of the high variety of the possible scenarios, using only observed scenarios for the assessment is not sufficient. Therefore, methods for generating additional scenarios are necessary. Our contribution is twofold. First, we propose a method to determine the parameters that describe the scenarios to a sufficient degree without relying on strong assumptions on the parameters that characterize the scenarios. By estimating the probability density function (pdf) of these parameters, realistic parameter values can be generated. Second, we present the Scenario Representativeness (SR) metric based on the Wasserstein distance, which quantifies to what extent the scenarios with the generated parameter values are representative of real-world scenarios while covering the actual variety found in the real-world scenarios. A comparison of our proposed method with methods relying on assumptions of the scenario parametrization and pdf estimation shows that the proposed method can automatically determine the optimal scenario parametrization and pdf estimation. Furthermore, we demonstrate that our SR metric can be used to choose the (number of) parameters that best describe a scenario. The presented method is promising, because the parameterization and pdf estimation can directly be applied to already available importance sampling strategies for accelerating the evaluation of AVs.