论文标题

Triggercit:使用Twitter和GeOlocation提前洪水警报 - 与其他来源的比较

TriggerCit: Early Flood Alerting using Twitter and Geolocation -- a comparison with alternative sources

论文作者

Bono, Carlo, Pernici, Barbara, Fernandez-Marquez, Jose Luis, Shankar, Amudha Ravi, Mülâyim, Mehmet Oğuz, Nemni, Edoardo

论文摘要

在自然灾害后立即进行快速影响评估对于向国际组织,地方当局和急救人员提供足够的信息至关重要。社交媒体可以在持续的事件期​​间通过公民和组织发布的基于证据的内容来支持应急响应。在本文中,我们提出了TriggerCit:一种以多语言方法为重点介绍及时性和地理位置的早期洪水警报工具。本文着重于评估该方法作为触发系统的可靠性,将其与替代来源进行警报的来源进行比较,并评估收集的补充信息的质量和量。在2021年,关于泰国和尼泊尔洪水的两个案例研究中,分析了从Twitter提取的地理视觉证据。

Rapid impact assessment in the immediate aftermath of a natural disaster is essential to provide adequate information to international organisations, local authorities, and first responders. Social media can support emergency response with evidence-based content posted by citizens and organisations during ongoing events. In the paper, we propose TriggerCit: an early flood alerting tool with a multilanguage approach focused on timeliness and geolocation. The paper focuses on assessing the reliability of the approach as a triggering system, comparing it with alternative sources for alerts, and evaluating the quality and amount of complementary information gathered. Geolocated visual evidence extracted from Twitter by TriggerCit was analysed in two case studies on floods in Thailand and Nepal in 2021.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源