论文标题

智能手机/巴士隐式互动和多感官无监督的因果学习的大规模乘客检测

Large Scale Passenger Detection with Smartphone/Bus Implicit Interaction and Multisensory Unsupervised Cause-effect Learning

论文作者

Servizi, Valentino, Persson, Dan R., Pereira, Francisco C., Villadsen, Hannah, Bækgaard, Per, Rich, Jeppe, Nielsen, Otto A.

论文摘要

智能运输系统(ITS)基于移动性作为服务(MAA)的概念,该概念需要通用和无缝的用户在多个公共和私人运输系统中的访问权限,同时允许运营商的比例收入共享。当前的用户传感技术,例如步入/步入式(WiWO)和入住/退房(CICO),大规模部署的可扩展性有限。这些限制阻止其支持分析,优化,收入共享的计算以及对MAAS舒适性,安全性和效率的控制。我们专注于隐式be-in/be-of(BIBO)智能手机感应和分类的概念。 为了缩小差距并增强智能手机对MAAS,我们开发了一个专有的智能手机感应平台,该平台从安装在公共汽车和全球定位系统(GPS)位置的BLE设备(BLE设备)中收集当代蓝牙低能(BLE)信号。为了启用基于GPS特征的模型针对BLE伪标签的训练,我们提出了因果效应的多任务瓦斯坦自动编码器(CEMWA)。 CEMWA在Wasserstein自动编码器和神经网络周围结合并扩展了几个框架。作为降低维度工具,CEMWA获得了一个潜在空间的自动验证表示形式,该表示在运输系统中描述了用户的智能手机。此表示允许通过DBSCAN进行BIBO聚类。 我们对CEMWA的替代体系结构进行消融研究,并根据最佳可用监督方法进行基准。我们分析了性能对标签质量的敏感性。在准确地面真理的天真假设下,Xgboost优于cemwa。尽管Xgboost和随机森林被证明对标签噪声耐受性,但CEMWA对通过设计标签噪声不可知,并以88 \%的F1分数提供最佳性能。

Intelligent Transportation Systems (ITS) underpin the concept of Mobility as a Service (MaaS), which requires universal and seamless users' access across multiple public and private transportation systems while allowing operators' proportional revenue sharing. Current user sensing technologies such as Walk-in/Walk-out (WIWO) and Check-in/Check-out (CICO) have limited scalability for large-scale deployments. These limitations prevent ITS from supporting analysis, optimization, calculation of revenue sharing, and control of MaaS comfort, safety, and efficiency. We focus on the concept of implicit Be-in/Be-out (BIBO) smartphone-sensing and classification. To close the gap and enhance smartphones towards MaaS, we developed a proprietary smartphone-sensing platform collecting contemporary Bluetooth Low Energy (BLE) signals from BLE devices installed on buses and Global Positioning System (GPS) locations of both buses and smartphones. To enable the training of a model based on GPS features against the BLE pseudo-label, we propose the Cause-Effect Multitask Wasserstein Autoencoder (CEMWA). CEMWA combines and extends several frameworks around Wasserstein autoencoders and neural networks. As a dimensionality reduction tool, CEMWA obtains an auto-validated representation of a latent space describing users' smartphones within the transport system. This representation allows BIBO clustering via DBSCAN. We perform an ablation study of CEMWA's alternative architectures and benchmark against the best available supervised methods. We analyze performance's sensitivity to label quality. Under the naïve assumption of accurate ground truth, XGBoost outperforms CEMWA. Although XGBoost and Random Forest prove to be tolerant to label noise, CEMWA is agnostic to label noise by design and provides the best performance with an 88\% F1 score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源