论文标题

密集晶体学对称组包装的熵信任区域

Entropic trust region for densest crystallographic symmetry group packings

论文作者

Torda, Miloslav, Goulermas, John Y., Púček, Roland, Kurlin, Vitaliy

论文摘要

分子晶体结构预测(CSP)鉴于分子​​的化学成分和压力温度条件,寻求最稳定的周期性结构。现代CSP求解器使用全局优化方法来搜索在分子间电位引起的复杂能量景观中具有最小自由能的结构。这些方法的一个主要警告是初始配置是随机的,因此搜索易受局部最小值收敛的影响。提供相对于分子的几何表示密集包装的初始构型可以显着加速CSP。在这些观察结果的激励下,我们定义了仅限于晶体学对称组(CSG)的一类定期包装,并在信息几何框架中为最密集的CSG包装设计了一种搜索方法。由于CSG在配置空间上诱导了环形拓扑,因此在统计流形上执行非欧几里得信任区域方法,该统计歧管由$ n $维平面单位圆环定义的概率分布组成,通过扩展多变量von mises分布。将健身函数的自适应分位数重新重新制定到优化时间表中提供了通过局部双重测量流的几何表征的算法。此外,我们检查了自适应选择定义定义的信任区域的几何形状,并表明该算法在扩展多变量的von Mises分布式随机向量之间对随机依赖性进行了最大化。我们通过实验评估该方法对凸多边形的各种浓料包的行为和性能,以$ 2 $维的CSG为$ 2 $二维的CSG,并证明了其在五烯薄膜CSP中的应用。

Molecular crystal structure prediction (CSP) seeks the most stable periodic structure given the chemical composition of a molecule and pressure-temperature conditions. Modern CSP solvers use global optimization methods to search for structures with minimal free energy within a complex energy landscape induced by intermolecular potentials. A major caveat of these methods is that initial configurations are random, making thus the search susceptible to convergence at local minima. Providing initial configurations that are densely packed with respect to the geometric representation of a molecule can significantly accelerate CSP. Motivated by these observations, we define a class of periodic packings restricted to crystallographic symmetry groups (CSG) and design a search method for the densest CSG packings in an information-geometric framework. Since the CSG induce a toroidal topology on the configuration space, a non-Euclidean trust region method is performed on a statistical manifold consisting of probability distributions defined on an $n$-dimensional flat unit torus by extending the multivariate von Mises distribution. Introducing an adaptive quantile reformulation of the fitness function into the optimization schedule provides the algorithm with a geometric characterization through local dual geodesic flows. Moreover, we examine the geometry of the adaptive selection-quantile defined trust region and show that the algorithm performs a maximization of stochastic dependence among elements of the extended multivariate von Mises distributed random vector. We experimentally evaluate the behavior and performance of the method on various densest packings of convex polygons in $2$-dimensional CSGs for which optimal solutions are known, and demonstrate its application in the pentacene thin-film CSP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源