论文标题

不确定性驱动探索和导航的计划者

Uncertainty-driven Planner for Exploration and Navigation

论文作者

Georgakis, Georgios, Bucher, Bernadette, Arapin, Anton, Schmeckpeper, Karl, Matni, Nikolai, Daniilidis, Kostas

论文摘要

我们考虑在以前看不见的环境中探索和点目标导航的问题,在此环境中,室内场景的空间复杂性和部分可观察性构成了这些任务具有挑战性。我们认为,在室内地图上学习占用先验,在解决这些问题方面具有很大的优势。为此,我们提出了一个新颖的规划框架,该框架首先学会了以超出代理商的视野来生成占用图,第二个利用模型的不确定性在生成的区域上,以制定每个感兴趣的任务的路径选择策略。对于积分目标导航,策略选择具有上限置信的策略的路径,以实现高效和可穿越的路径,而为了探索策略,该政策最大程度地提高了候选路径的模型不确定性。我们使用栖息地模拟器在Matterport3d的视觉现实环境中进行实验,并证明:1)与竞争方法相对于竞争方法的勘探和映射质量指标的改进结果,以及2)与最先进的ART DD-PPPO方法配对点目标导航任务时,我们的计划模块的有效性。

We consider the problems of exploration and point-goal navigation in previously unseen environments, where the spatial complexity of indoor scenes and partial observability constitute these tasks challenging. We argue that learning occupancy priors over indoor maps provides significant advantages towards addressing these problems. To this end, we present a novel planning framework that first learns to generate occupancy maps beyond the field-of-view of the agent, and second leverages the model uncertainty over the generated areas to formulate path selection policies for each task of interest. For point-goal navigation the policy chooses paths with an upper confidence bound policy for efficient and traversable paths, while for exploration the policy maximizes model uncertainty over candidate paths. We perform experiments in the visually realistic environments of Matterport3D using the Habitat simulator and demonstrate: 1) Improved results on exploration and map quality metrics over competitive methods, and 2) The effectiveness of our planning module when paired with the state-of-the-art DD-PPO method for the point-goal navigation task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源