论文标题
具有嵌入式单向功能的物理层安全性的非合并巨大的mimo
Noncoherent Massive MIMO with Embedded One-Way Function Physical Layer Security
论文作者
论文摘要
我们提出了一种新颖的物理层安全方案,该方案利用优化方法作为单向函数。所提出的方案建立在非差分多输入多输出(MIMO)的基础上,即使在大规模的MIMO场景中,它也能够进行非合并检测,从而抵御风险的飞行员插入和飞行员污染攻击。与传统的非差分差异MIMO方案相反,该方案需要通过高度复杂,离散和组合优化设计的时空投影矩阵,拟议的方案利用了通过低复杂性连续优化构建的投影矩阵,旨在最大程度地利用系统的编码增益。此外,使用从无线通道的真实随机性生成的秘密密钥作为初始值,提出的基于连续优化的投影矩阵构造方法成为单向函数,使得拟议的方案是物理层安全的差异MIMO系统。还设计了一种攻击提出的方案的攻击算法,这表明,即使在窃听器可以完美地估计毫无疑问估计渐近的信号噪声比率的环境中,也随着发射天线数量的增加而提高的安全水平也会提高。
We propose a novel physical layer security scheme that exploits an optimization method as a one-way function. The proposed scheme builds on nonsquare differential multiple-input multiple-output (MIMO), which is capable of noncoherent detection even in massive MIMO scenarios and thus resilient against risky pilot insertion and pilot contamination attacks. In contrast to conventional nonsquare differential MIMO schemes, which require space-time projection matrices designed via highly complex, discrete, and combinatorial optimization, the proposed scheme utilizes projection matrices constructed via low-complexity continuous optimization designed to maximize the coding gain of the system. Furthermore, using a secret key generated from the true randomness nature of the wireless channel as an initial value, the proposed continuous optimization-based projection matrix construction method becomes a one-way function, making the proposed scheme a physical layer secure differential MIMO system. An attack algorithm to challenge the proposed scheme is also devised, which demonstrates that the security level achieved improves as the number of transmit antennas increases, even in an environment where the eavesdropper can perfectly estimate channel coefficients and experience asymptotically large signal-to-noise ratios.