论文标题

关于德林菲尔德的猜想

On a Conjecture of Drinfeld

论文作者

Pal, Sarbeswar

论文摘要

令$ c $是平滑的不可约的投影曲线,$ g \ ge 2 $。令$ \ MATHCAL {M} _C(n,δ)$为稳定矢量捆绑包的模量$ n $ $ n $和固定的degriant $δ$ $ d $。然后已知摇摆束的轨迹以$ \ MATHCAL {M} _C(N,δ)$关闭。德林菲尔德(Drinfeld)猜想,摇摆的基因座是纯粹的二含量,即,它们以$ \ mathcal {m} _c(n,δ)$形成一个除数。在本文中,我们将证明猜想。

Let $C$ be smooth irreducible projective curve of genus $g \ge 2$. Let $\mathcal{M}_C(n, δ)$ be moduli space of stable vector bundles on $C$ of rank $n$ and fixed determinant $δ$ of degree $d$. Then the locus of wobbly bundles are known to be closed in $\mathcal{M}_C(n, δ)$. Drinfeld has conjectured that the wobbly locus is pure of co-dimension one, i.e., they form a divisor in $\mathcal{M}_C(n, δ)$. In this article, we will give a prove of the conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源