论文标题

使用深度学习来检测生物周期攻击中特洛伊木马的数字编码DNA触发器

Using Deep Learning to Detect Digitally Encoded DNA Trigger for Trojan Malware in Bio-Cyber Attacks

论文作者

Islam, Mohd Siblee, Ivanov, Stepan, Awan, Hamdan, Drohan, Jennifer, Balasubramaniam, Sasitharan, Coffey, Lee, Kidambi, Srivatsan, Sri-saan, Witty

论文摘要

本文使用深度学习技术来保护DNA测序免受生物周期攻击。我们考虑将有效载荷编码为DNA序列,以激活测序管道中使用的软件工具中的Trojan恶意软件,以使肇事者能够在序列分析过程中对该管道中使用的资源进行控制。论文中考虑的方案是基于犯罪者提交的合成工程DNA样品,这些DNA样品包含数字编码的IP地址和DNA中肇事者机器的端口号。样品DNA的遗传分析将解码软件Trojan恶意软件使用以激活和触发远程连接的地址。这种方法可以向多个肇事者打开,以创建劫持DNA测序管道的连接。作为隐藏数据的一种方式,肇事者可以通过编码地址来避免检测,以最大程度地与真实的DNA相似,这是我们以前显示的。但是,在本文中,我们展示了如何使用深度学习成功检测和识别触发编码的数据,以保护DNA测序管道免受特洛伊木马攻击。结果在这种新型的特洛伊木马攻击方案中,即使在编码的触发器数据上应用了碎片加密和隐肌后,在这种新型的特洛伊木马攻击方案中的检测精度几乎达到100%的精度。此外,通过湿实验室实验验证了设计和合成此类特洛伊木马有效载荷的编码DNA的可行性。

This article uses Deep Learning technologies to safeguard DNA sequencing against Bio-Cyber attacks. We consider a hybrid attack scenario where the payload is encoded into a DNA sequence to activate a Trojan malware implanted in a software tool used in the sequencing pipeline in order to allow the perpetrators to gain control over the resources used in that pipeline during sequence analysis. The scenario considered in the paper is based on perpetrators submitting synthetically engineered DNA samples that contain digitally encoded IP address and port number of the perpetrators machine in the DNA. Genetic analysis of the samples DNA will decode the address that is used by the software trojan malware to activate and trigger a remote connection. This approach can open up to multiple perpetrators to create connections to hijack the DNA sequencing pipeline. As a way of hiding the data, the perpetrators can avoid detection by encoding the address to maximise similarity with genuine DNAs, which we showed previously. However, in this paper we show how Deep Learning can be used to successfully detect and identify the trigger encoded data, in order to protect a DNA sequencing pipeline from trojan attacks. The result shows nearly up to 100% accuracy in detection in such a novel Trojan attack scenario even after applying fragmentation encryption and steganography on the encoded trigger data. In addition, feasibility of designing and synthesizing encoded DNA for such Trojan payloads is validated by a wet lab experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源