论文标题
功能线性分位回归的统计推断
Statistical Inference for Functional Linear Quantile Regression
论文作者
论文摘要
我们建议用于功能线性分位数回归的推论工具,其中标量响应的条件分位数假定为函数协变量的线性函数。与常规方法相反,我们采用内核卷积来平滑原始损失函数。系数函数是在复制的内核希尔伯特太空框架下估计的。梯度下降算法旨在最大程度地减少平滑损耗函数,并进行粗糙度惩罚。借助Banach定理,我们将提出的估计量的存在和独特性显示为适当的希尔伯特空间中正则损失函数的最小化器。此外,我们建立了收敛速率以及估计器的弱收敛性。据我们所知,这是功能分位数回归模型的第一个弱收敛结果。然后基于这些理论特性开发了真正系数函数的点置置信区间和同时的置信频带。进行了数值研究,包括模拟和数据应用,以研究有限样本中我们的估计器和推理工具的性能。
We propose inferential tools for functional linear quantile regression where the conditional quantile of a scalar response is assumed to be a linear functional of a functional covariate. In contrast to conventional approaches, we employ kernel convolution to smooth the original loss function. The coefficient function is estimated under a reproducing kernel Hilbert space framework. A gradient descent algorithm is designed to minimize the smoothed loss function with a roughness penalty. With the aid of the Banach fixed-point theorem, we show the existence and uniqueness of our proposed estimator as the minimizer of the regularized loss function in an appropriate Hilbert space. Furthermore, we establish the convergence rate as well as the weak convergence of our estimator. As far as we know, this is the first weak convergence result for a functional quantile regression model. Pointwise confidence intervals and a simultaneous confidence band for the true coefficient function are then developed based on these theoretical properties. Numerical studies including both simulations and a data application are conducted to investigate the performance of our estimator and inference tools in finite sample.