论文标题

关于诺里的问题:障碍,改进和应用

On a question of Nori: obstructions, improvements, and applications

论文作者

Banerjee, Sourjya, Das, Mrinal Kanti

论文摘要

本文涉及M. V. Nori对多项式代数上定义的投影模块的各个部分的同喻,该部分在平滑的仿射域$ r $上。虽然这个问题有一个肯定的答案,但众所周知,当$ \ dim(r)= 2 $;或(2)$ d \ geq 3 $,但$ r $并不光滑。我们首先证明,当$ r $是$ \ bar {\ mathbb {f}} _ p $ -Algebra时,可以为$ \ dim(r)= 2 $给出肯定答案。接下来,对于$ d \ geq 3 $,我们找到了单个情况下故障的确切阻塞。此外,在戒指$ a $是affine $ \ bar {\ mathbb {f}} _ p $ - dimension $ d $的情况下,我们改善了曼达尔(与Nori的问题有关)的结果(与Nori的问题有关)。 We apply this improvement to define the $n$-th Euler class group $E^n(A)$, where $2n\ge d+2.$ Moreover, if $A$ is smooth, we associate to a unimodular row $v$ of length $n+1$ its Euler class $e(v)\in E^n(A)$ and show that the corresponding stably free module, say, $P(v)$ has a unimodular element if and只有$ e(v)$在$ e^n(a)$中消失。

This article concerns a question asked by M. V. Nori on homotopy of sections of Projective modules defined on the polynomial algebra over a smooth affine domain $R$. While this question has an affirmative answer, it is known that the assertion does not hold if: (1) $\dim(R)=2$; or (2) $d\geq 3$ but $R$ is not smooth. We first prove that an affirmative answer can be given for $\dim(R)=2$ when $R$ is an $\bar{\mathbb{F}}_p$-algebra. Next, for $d\geq 3$ we find the precise obstruction for the failure in the singular case. Further, we improve a result of Mandal (related to Nori's question) in the case when the ring $A$ is an affine $\bar{\mathbb{F}}_p$-algebra of dimension $d$. We apply this improvement to define the $n$-th Euler class group $E^n(A)$, where $2n\ge d+2.$ Moreover, if $A$ is smooth, we associate to a unimodular row $v$ of length $n+1$ its Euler class $e(v)\in E^n(A)$ and show that the corresponding stably free module, say, $P(v)$ has a unimodular element if and only if $e(v)$ vanishes in $E^n(A)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源