论文标题

快速重新配置可编程事项

Fast Reconfiguration for Programmable Matter

论文作者

Kostitsyna, Irina, Peters, Tom, Speckmann, Bettina

论文摘要

可编程物质的概念设想了形成智能材料的大量小型机器人粒子。即使粒子仅限于本地通信,本地运动和简单的计算,但它们的作用仍可以导致材料的物理特性和几何形状的全球变化。 可编程问题的基本算法任务是通过指定粒子的局部行为来实现全局形状重新配置。在本文中,我们描述了一种在Amoebot模型中形成重新配置的新方法。 Amoebot模型是一个分布式模型,可显着限制单个粒子的内存,计算和通信能力。因此,挑战在于协调颗粒产生全球系统所需行为的作用。 我们的重新配置算法是第一个算法,在任意形状之间转换时不使用规范中间配置。我们在最坏情况下在线性数量的激活弹中介绍了用于Amoebots的新几何原语,并展示如何使用这些原语的粒子系统重新配置粒子系统。实际上,我们的方法利用了输入和输出形状之间的对称差异的几何形状:当初始形状和目标形状之间的对称差异很小时,它可以最大程度地减少粒子系统的不必要的拆卸和重新组装。此外,我们的重新配置算法将粒子移到问题实例允许的尽可能短的最短路径上。

The concept of programmable matter envisions a very large number of tiny and simple robot particles forming a smart material. Even though the particles are restricted to local communication, local movement, and simple computation, their actions can nevertheless result in the global change of the material's physical properties and geometry. A fundamental algorithmic task for programmable matter is to achieve global shape reconfiguration by specifying local behavior of the particles. In this paper we describe a new approach for shape reconfiguration in the amoebot model. The amoebot model is a distributed model which significantly restricts memory, computing, and communication capacity of the individual particles. Thus the challenge lies in coordinating the actions of particles to produce the desired behavior of the global system. Our reconfiguration algorithm is the first algorithm that does not use a canonical intermediate configuration when transforming between arbitrary shapes. We introduce new geometric primitives for amoebots and show how to reconfigure particle systems, using these primitives, in a linear number of activation rounds in the worst case. In practice, our method exploits the geometry of the symmetric difference between input and output shape: it minimizes unnecessary disassembly and reassembly of the particle system when the symmetric difference between the initial and the target shapes is small. Furthermore, our reconfiguration algorithm moves the particles over as many parallel shortest paths as the problem instance allows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源