论文标题

基于最佳预测的T模型的动态系统的动态模式分解扩展

Extension of Dynamic Mode Decomposition for dynamic systems with incomplete information based on t-model of optimal prediction

论文作者

Katrutsa, Aleksandr, Utyuzhnikov, Sergey, Oseledets, Ivan

论文摘要

事实证明,动态模式分解是研究动态数据的一种非常有效的技术。这完全是一种数据驱动的方法,它从数据快照中提取所有必要的信息,这些信息通常应该从测量中进行采样。如果可用的数据不完整,则该方法的应用会成为问题,因为较小规模的某些尺寸丢失或无法计量。这种设置经常发生在建模复杂的动力学系统(例如电网)时,尤其是通过减少订单建模。为了考虑到未解决变量的效果,可以应用基于莫里·兹万齐格形式主义的最佳预测方法,以在现有不确定性下获得最期待的预测。这有效地导致了时间预测性模型的发展,该模型对丢失数据的影响进行了解释。在本文中,我们从liouville方程式提供了对考虑方法的详细推导,并通过定义与观察到的数据相对应的最佳过渡操作员的优化问题对其进行了最终确定。与现有方法相反,我们考虑了Mori-Zwanzig分解的一阶近似,陈述相应的优化问题,并使用基于梯度的优化方法来解决它。通过自动分化技术精确计算获得的目标函数的梯度。数值实验表明,所考虑的方法几乎具有与确切的Mori-Zwanzig分解相同的动力学,但计算强度较小。

The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data. This is entirely a data-driven approach that extracts all necessary information from data snapshots which are commonly supposed to be sampled from measurement. The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured. Such setting occurs very often in modeling complex dynamical systems such as power grids, in particular with reduced-order modeling. To take into account the effect of unresolved variables the optimal prediction approach based on the Mori-Zwanzig formalism can be applied to obtain the most expected prediction under existing uncertainties. This effectively leads to the development of a time-predictive model accounting for the impact of missing data. In the present paper we provide a detailed derivation of the considered method from the Liouville equation and finalize it with the optimization problem that defines the optimal transition operator corresponding to the observed data. In contrast to the existing approach, we consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method. The gradient of the obtained objective function is computed precisely through the automatic differentiation technique. The numerical experiments illustrate that the considered approach gives practically the same dynamics as the exact Mori-Zwanzig decomposition, but is less computationally intensive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源