论文标题

多视图意图删除图形网络用于捆绑建议

Multi-view Intent Disentangle Graph Networks for Bundle Recommendation

论文作者

Zhao, Sen, Wei, Wei, Zou, Ding, Mao, Xianling

论文摘要

Bundle建议旨在向用户推荐整个项目。然而,他们通常忽略了用户对采用项目的意图的多样性,并且无法解散用户在表示形式中的意图。在捆绑建议的实际情况下,用户的意图可以自然分布在该用户的不同捆绑中(全局视图),而捆绑包可能包含用户的多个意图(本地视图)。每个视图都有其意图解开的优势:1)从全球视图中,涉及更多项目来呈现每个意图,这可以更清楚地证明用户在每个意图下的喜好。 2)从本地视图中,它可以揭示每个意图下的项目之间的关联,因为同一捆绑包中的项目彼此高度相关。为此,我们提出了一个名为Multi-View Intentangle图形网络(MIDGN)的新型模型,该模型能够精确,全面地捕获用户意图的多样性和项目的关联,并在更精细的粒度上。具体而言,MIDGN分别从两个不同的角度解开了用户的意图:1)在全球级别,中型中MIDGN将用户的意图与 - 跨构成项目相结合; 2)在本地级别,MIDGN将用户的意图与每个捆绑包中的项目结合在一起。 同时,我们比较用户的意图在对比度学习框架下与不同观点相关的意图,以提高学习意图。在两个基准数据集上进行的广泛实验表明,中期的表现分别超过10.7%和26.8%。

Bundle recommendation aims to recommend the user a bundle of items as a whole. Nevertheless, they usually neglect the diversity of the user's intents on adopting items and fail to disentangle the user's intents in representations. In the real scenario of bundle recommendation, a user's intent may be naturally distributed in the different bundles of that user (Global view), while a bundle may contain multiple intents of a user (Local view). Each view has its advantages for intent disentangling: 1) From the global view, more items are involved to present each intent, which can demonstrate the user's preference under each intent more clearly. 2) From the local view, it can reveal the association among items under each intent since items within the same bundle are highly correlated to each other. To this end, we propose a novel model named Multi-view Intent Disentangle Graph Networks (MIDGN), which is capable of precisely and comprehensively capturing the diversity of the user's intent and items' associations at the finer granularity. Specifically, MIDGN disentangles the user's intents from two different perspectives, respectively: 1) In the global level, MIDGN disentangles the user's intent coupled with inter-bundle items; 2) In the Local level, MIDGN disentangles the user's intent coupled with items within each bundle. Meanwhile, we compare the user's intents disentangled from different views under the contrast learning framework to improve the learned intents. Extensive experiments conducted on two benchmark datasets demonstrate that MIDGN outperforms the state-of-the-art methods by over 10.7% and 26.8%, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源