论文标题

ZX-DIAGRAM的添加和差异

Addition and Differentiation of ZX-diagrams

论文作者

Jeandel, Emmanuel, Perdrix, Simon, Veshchezerova, Margarita

论文摘要

ZX-Calculus是量子计算中推理的强大框架。它特别提供了关注矩阵的紧凑表示。 ZX-Calculus的特性特性是没有正式总和,允许任意ZX-Diagram的线性组合。形式主义的普遍性保证,对于任何两个ZX-Diagry,其解释的总和可以用ZX-Diagram表示。我们介绍了依赖于受控图的构造的ZX-Diagram的添加的一般归纳定义。基于此加法技术,我们提供了ZX-Diagrams的电感分化。 实际上,给定具有变量在其角度的描述中的ZX-DIAGR,可以根据这些变量之一来区分图表。分化在量子力学和量子计算中无处不在(例如,用于解决优化问题)。从技术上讲,ZX-DIAGRAM的差异与产品规则见证的总和密切相关。 我们还引入了一种替代性,非电感性的分化技术,而不是基于变量的隔离。最后,我们运用结果来推断伊辛·哈密顿式的图表。

The ZX-calculus is a powerful framework for reasoning in quantum computing. It provides in particular a compact representation of matrices of interests. A peculiar property of the ZX-calculus is the absence of a formal sum allowing the linear combinations of arbitrary ZX-diagrams. The universality of the formalism guarantees however that for any two ZX-diagrams, the sum of their interpretations can be represented by a ZX-diagram. We introduce a general, inductive definition of the addition of ZX-diagrams, relying on the construction of controlled diagrams. Based on this addition technique, we provide an inductive differentiation of ZX-diagrams. Indeed, given a ZX-diagram with variables in the description of its angles, one can differentiate the diagram according to one of these variables. Differentiation is ubiquitous in quantum mechanics and quantum computing (e.g. for solving optimization problems). Technically, differentiation of ZX-diagrams is strongly related to summation as witnessed by the product rules. We also introduce an alternative, non inductive, differentiation technique rather based on the isolation of the variables. Finally, we apply our results to deduce a diagram for an Ising Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源