论文标题

在低温下临界链中拓扑指数的量化

Quantization of topological indices in critical chains at low temperatures

论文作者

Balabanov, Oleksandr, Ortega-Taberner, Carlos, Hermanns, Maria

论文摘要

目前,各种类型的拓扑现象正在积极研究中。在本文中,我们建议将已知的拓扑数量概括为有限的温度,从而使我们可以考虑在同一基础上散布和关键(无间隙)系统。然后讨论,拓扑指数的量化也是在批判性的,通过采取低温极限来检索。在一个简单的手性临界链的案例研究中,明确说明了这个想法,在分析和数字上显示了量化的量化。形式主义还用于研究拓扑指数的鲁棒性,以对各种类型的无序扰动。

Various types of topological phenomena at criticality are currently under active research. In this paper we suggest to generalize the known topological quantities to finite temperatures, allowing us to consider gapped and critical (gapless) systems on the same footing. It is then discussed that the quantization of the topological indices, also at critically, is retrieved by taking the low-temperature limit. This idea is explicitly illustrated on a simple case study of chiral critical chains where the quantization is shown analytically and verified numerically. The formalism is also applied for studying robustness of the topological indices to various types of disordering perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源