论文标题
深图学习异常引用检测
Deep Graph Learning for Anomalous Citation Detection
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Anomaly detection is one of the most active research areas in various critical domains, such as healthcare, fintech, and public security. However, little attention has been paid to scholarly data, i.e., anomaly detection in a citation network. Citation is considered as one of the most crucial metrics to evaluate the impact of scientific research, which may be gamed in multiple ways. Therefore, anomaly detection in citation networks is of significant importance to identify manipulation and inflation of citations. To address this open issue, we propose a novel deep graph learning model, namely GLAD (Graph Learning for Anomaly Detection), to identify anomalies in citation networks. GLAD incorporates text semantic mining to network representation learning by adding both node attributes and link attributes via graph neural networks. It exploits not only the relevance of citation contents but also hidden relationships between papers. Within the GLAD framework, we propose an algorithm called CPU (Citation PUrpose) to discover the purpose of citation based on citation texts. The performance of GLAD is validated through a simulated anomalous citation dataset. Experimental results demonstrate the effectiveness of GLAD on the anomalous citation detection task.