论文标题
使用图形卷积网络对计算机辅助工程(CAE)零件进行分类
Classification of Computer Aided Engineering (CAE) Parts Using Graph Convolutional Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
CAE engineers work with hundreds of parts spread across multiple body models. A Graph Convolutional Network (GCN) was used to develop a CAE parts classifier. As many as 866 distinct parts from a representative body model were used as training data. The parts were represented as a three-dimensional (3-D) Finite Element Analysis (FEA) mesh with values of each node in the x, y, z coordinate system. The GCN based classifier was compared to fully connected neural network and PointNet based models. Performance of the trained models was evaluated with a test set that included parts from the training data, but with additional holes, rotation, translation, mesh refinement/coarsening, variation of mesh schema, mirroring along x and y axes, variation of topographical features, and change in mesh node ordering. The trained GCN model was able to achieve 88.5% classification accuracy on the test set i.e., it was able to find the correct matching part from the dataset of 866 parts despite significant variation from the baseline part. A CAE parts classifier demonstrated in this study could be very useful for engineers to filter through CAE parts spread across several body models to find parts that meet their requirements.