论文标题
部分可观测时空混沌系统的无模型预测
A 5.3 GHz Al0.76Sc0.24N Two-Dimensional Resonant Rods Resonator with a kt2 of 23.9%
论文作者
论文摘要
这项工作报告了铝扫描剂(ALSCN)二维谐振杆谐振器(2DRR)的测量性能,该谐振器(2DRR)通过使用24%的SC掺杂浓度制造,其特征在于低差异障碍物(〜25 ohm),并展示了记录的电子力学coupling coupling Coupling Coupling Conconson conson conson conson and2.9%。为了实现这种性能,我们确定并依赖于高度掺杂的ALSCN膜的优化沉积和蚀刻过程,旨在达到高结晶质量,在2DRR的活性区域中异常定向晶粒的低密度以及较锐利的侧面侧面侧面侧面侧面。同样,2DRR的单位电池经过了声学设计,以最大程度地提高每个杆内的压电机械能,并确保围绕共振的伪造模式较低。由于其前所未有的KT2,报道的2DRR为开发下一代单片整合射频(RF)过滤组件开发了令人兴奋的方案。实际上,我们表明,分数带宽(BW)为〜11%,插入 - 损失(I.L)值约为2.5 dB,并且现在可以设想出> 30 dB的拒绝,现在可以设想出> 30 dB的拒绝,现在可以铺平了一个前所未有的途径(UWB)的发射(UWB),以铺平了前面的途径(UWB),供您铺平了距离(UWB)的前景(UWB),供您铺平了距离(UWB)的发展(UWB),从而获得了〜2.5 dB的倒数(i.l)值,从而获得了〜2.5 dB的尺寸(i.l)值(UWB),供您铺平了距离(UWB),供您铺平了30 dB的梯度(i.l)值(UWB),以示为超级以外的途径(UWB)前端。
This work reports on the measured performance of an Aluminum Scandium Nitride (AlScN) Two-Dimensional Resonant Rods resonator (2DRR), fabricated by using a Sc-doping concentration of 24%, characterized by a low off-resonance impedance (~25 Ohm) and exhibiting a record electromechanical coupling coefficient (kt2) of 23.9% for AlScN resonators. In order to achieve such performance, we identified and relied on optimized deposition and etching processes for highly-doped AlScN films, aiming at achieving high crystalline quality, low density of abnormally oriented grains in the 2DRR's active region and sharp lateral sidewalls. Also, the 2DRR's unit-cell has been acoustically engineered to maximize the piezo-generated mechanical energy within each rod and to ensure a low transduction of spurious modes around resonance. Due to its unprecedented kt2, the reported 2DRR opens exciting scenarios towards the development of next generation monolithic integrated radio-frequency (RF) filtering components. In fact, we show that 5th-order 2DRR-based ladder filters with fractional bandwidths (BW) of ~11%, insertion-loss (I.L) values of ~2.5 dB and with >30 dB out-of-band rejections can now be envisioned, paving an unprecedented path towards the development of ultra-wide band (UWB) filters for next-generation Super-High-Frequency (SHF) radio front-ends.