论文标题

实现有效的深卷积神经网络传感器融合进行自动驾驶

Enabling Efficient Deep Convolutional Neural Network-based Sensor Fusion for Autonomous Driving

论文作者

Zeng, Xiaoming, Wang, Zhendong, Hu, Yang

论文摘要

自主驾驶需要准确的看法和安全的决策。为了实现这一目标,自动化车辆现在配备了多个传感器(例如,相机,激光雷达等),使它们能够通过融合来自不同感应方式的数据来利用互补的环境环境。随着深度卷积神经网络(DCNN)的成功,DCNN之间的融合已被证明是实现令人满意的感知准确性的有希望的策略。但是,主流现有的DCNN融合方案通过直接添加从不同阶段中提取的特征地图来进行融合,从而在各个阶段将其提取在一起,但未能考虑是否匹配融合的特征。因此,我们首先提出一个特征差异度量,以定量测量融合的特征图之间的特征差异程度。然后,我们将Fusion-Filter作为一种功能匹配技术,以解决特征不匹配的问题。我们还提出了深层层中的层共享技术,可以通过较少的计算开销来实现更好的准确性。在特征差异的帮助下,我们提出的技术使DCNN能够学习具有相似特征的相应特征图和来自不同方式的互补视觉上下文,以实现更好的准确性。实验结果表明,我们提出的融合技术可以在计算资源需求较少的情况下在Kitti数据集上获得更好的准确性。

Autonomous driving demands accurate perception and safe decision-making. To achieve this, automated vehicles are now equipped with multiple sensors (e.g., camera, Lidar, etc.), enabling them to exploit complementary environmental context by fusing data from different sensing modalities. With the success of Deep Convolutional Neural Network(DCNN), the fusion between DCNNs has been proved as a promising strategy to achieve satisfactory perception accuracy. However, mainstream existing DCNN fusion schemes conduct fusion by directly element-wisely adding feature maps extracted from different modalities together at various stages, failing to consider whether the features being fused are matched or not. Therefore, we first propose a feature disparity metric to quantitatively measure the degree of feature disparity between the feature maps being fused. We then propose Fusion-filter as a feature-matching techniques to tackle the feature-mismatching issue. We also propose a Layer-sharing technique in the deep layer that can achieve better accuracy with less computational overhead. Together with the help of the feature disparity to be an additional loss, our proposed technologies enable DCNN to learn corresponding feature maps with similar characteristics and complementary visual context from different modalities to achieve better accuracy. Experimental results demonstrate that our proposed fusion technique can achieve better accuracy on KITTI dataset with less computational resources demand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源