论文标题

鲁棒学习和伪模式统计的普遍损失的非凸延长

Nonconvex Extension of Generalized Huber Loss for Robust Learning and Pseudo-Mode Statistics

论文作者

Gokcesu, Kaan, Gokcesu, Hakan

论文摘要

我们提出了伪Huber损失公式的扩展概括。我们表明,将Log-Exp转换与Logistic函数一起使用,我们可以创建一个损失,将严格凸损耗的理想属性与强大的损失函数结合在一起。通过这种公式,我们表明可以利用线性收敛算法来找到最小化器。我们进一步讨论了准分子复合损失的创建,并提供无衍生的指数收敛速率算法。

We propose an extended generalization of the pseudo Huber loss formulation. We show that using the log-exp transform together with the logistic function, we can create a loss which combines the desirable properties of the strictly convex losses with robust loss functions. With this formulation, we show that a linear convergence algorithm can be utilized to find a minimizer. We further discuss the creation of a quasi-convex composite loss and provide a derivative-free exponential convergence rate algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源