论文标题

Reorientbot:学习对象重新定位特定位置

ReorientBot: Learning Object Reorientation for Specific-Posed Placement

论文作者

Wada, Kentaro, James, Stephen, Davison, Andrew J.

论文摘要

机器人需要将物体放置在任意,具体姿势中以重新排列世界并完成各种有价值的任务的能力。对象的重新定位在此中起着至关重要的作用,因为最初可能不会定向对象,以使机器人可以掌握,然后立即将它们放在特定的目标姿势中。在这项工作中,我们提出了一个基于视觉的操纵系统Reorientbot,其中包括1)使用板载RGB-D摄像头的姿势估计和体积重建的视觉场景理解; 2)学习了成功有效的运动产生重新定位的Waypoint选择; 3)传统运动计划从所选航路点产生无冲突的轨迹。我们在模拟和现实世界中使用YCB对象评估了我们的方法,与启发式方法相比,取得93%的总体成功,成功率提高了81%,执行时间提高了22%。我们演示了扩展的多对象重排,显示了系统的一般能力。

Robots need the capability of placing objects in arbitrary, specific poses to rearrange the world and achieve various valuable tasks. Object reorientation plays a crucial role in this as objects may not initially be oriented such that the robot can grasp and then immediately place them in a specific goal pose. In this work, we present a vision-based manipulation system, ReorientBot, which consists of 1) visual scene understanding with pose estimation and volumetric reconstruction using an onboard RGB-D camera; 2) learned waypoint selection for successful and efficient motion generation for reorientation; 3) traditional motion planning to generate a collision-free trajectory from the selected waypoints. We evaluate our method using the YCB objects in both simulation and the real world, achieving 93% overall success, 81% improvement in success rate, and 22% improvement in execution time compared to a heuristic approach. We demonstrate extended multi-object rearrangement showing the general capability of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源