论文标题
私人因果效应的差异估计
Differentially Private Estimation of Heterogeneous Causal Effects
论文作者
论文摘要
估计医疗保健或社会科学等领域的异质治疗效果通常涉及保护隐私很重要的敏感数据。我们引入了一个通用的元算象,用于估计具有差异隐私(DP)保证的条件平均治疗效果(CATE)。我们的元算法可以与简单的单阶段CATE估计量(例如S-Gearner和更复杂的多阶段估计器,例如DR和R-LEARNER)配合使用。我们通过利用样品分裂在我们的元叠加和差异隐私的并行组成属性中进行严格的隐私分析。在本文中,我们使用DP-EBMS作为基础学习者实施我们的方法。 DP-EBM是具有隐私保证的可解释的高临界模型,这使我们能够直接观察DP噪声对学习因果模型的影响。我们的实验表明,多阶段的CATE估计器比单级CATE或ATE估计器更大的精度损失,并且大多数来自差异隐私的精度损失是由于方差增加,而不是对治疗效应的偏差估计值。
Estimating heterogeneous treatment effects in domains such as healthcare or social science often involves sensitive data where protecting privacy is important. We introduce a general meta-algorithm for estimating conditional average treatment effects (CATE) with differential privacy (DP) guarantees. Our meta-algorithm can work with simple, single-stage CATE estimators such as S-learner and more complex multi-stage estimators such as DR and R-learner. We perform a tight privacy analysis by taking advantage of sample splitting in our meta-algorithm and the parallel composition property of differential privacy. In this paper, we implement our approach using DP-EBMs as the base learner. DP-EBMs are interpretable, high-accuracy models with privacy guarantees, which allow us to directly observe the impact of DP noise on the learned causal model. Our experiments show that multi-stage CATE estimators incur larger accuracy loss than single-stage CATE or ATE estimators and that most of the accuracy loss from differential privacy is due to an increase in variance, not biased estimates of treatment effects.