论文标题
通过在2D X射线散射数据上通过基于深度学习的特征检测来跟踪钙钛矿结晶
Tracking perovskite crystallization via deep learning-based feature detection on 2D X-ray scattering data
论文作者
论文摘要
了解钙钛矿结晶的过程对于改善有机太阳能电池的性质至关重要。原位实时放牧X射线衍射(GIXD)是该任务的关键技术,但是它会产生大量数据,通常超过传统数据处理方法的功能。我们提出了一条自动化管道,以分析GixD图像,基于更快的R-CNN深度学习体系结构,用于对象检测,以符合散射数据的细节。该模型在具有各种实验伪像的嘈杂模式上检测衍射特征时表现出很高的精度。我们演示了我们在实时跟踪有机无机钙钛矿结构结晶的实时跟踪方法,并在两个应用程序上进行测试:1。自动化相位识别和单位细胞确定Ruddlesden-Popper 2D Perovskite的两个共存阶段,以及2。根据设计,我们的方法同样适用于其他晶体薄膜材料。
Understanding the processes of perovskite crystallization is essential for improving the properties of organic solar cells. In situ real-time grazing-incidence X-ray diffraction (GIXD) is a key technique for this task, but it produces large amounts of data, frequently exceeding the capabilities of traditional data processing methods. We propose an automated pipeline for the analysis of GIXD images, based on the Faster R-CNN deep learning architecture for object detection, modified to conform to the specifics of the scattering data. The model exhibits high accuracy in detecting diffraction features on noisy patterns with various experimental artifacts. We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications: 1. the automated phase identification and unit-cell determination of two coexisting phases of Ruddlesden-Popper 2D perovskites, and 2. the fast tracking of MAPbI$_3$ perovskite formation. By design, our approach is equally suitable for other crystalline thin-film materials.