论文标题
通过肺部分段改善胸部X射线上的分类模型性能
Improving Classification Model Performance on Chest X-Rays through Lung Segmentation
论文作者
论文摘要
胸部射线照相是用于诊断肺部疾病的有效筛查工具。在计算机辅助诊断中,提取相关感兴趣的区域,即隔离每个X射线照相图像的肺部区域,这可能是提高诊断肺部疾病的性能的重要一步。方法:在这项工作中,我们提出了一种深度学习方法,以通过分割来增强异常的胸部X射线(CXR)识别性能。我们的方法以级联的方式设计,并结合了两个模块:具有纵横交错的注意模块(XLSOR)的深神经网络(XLSOR),用于将肺部定位在CXR图像中,而CXR分类模型则具有自我抑制的动量对比(Moco)模型(MOCO)模型的主链模型。在深圳医院(SH)的数据集中评估了所提出的管道,以及分割和分类模块的COVIDX数据集。除了针对分割模块的定期评估指标外,还进行了新的统计分析。此外,通过梯度加权类激活映射(GRAD-CAM)分析了优化方法的结果,以研究分类决策背后的基本原理并解释其选择。结果和结论:研究了所提出管道的每个模块的不同数据集,方法和场景,以设计优化的方法,该方法在区分异常CXR图像(即肺炎和COVID-19)方面的准确性为0.946。数值和视觉验证表明,将自动分割应用作为分类的预处理步骤可提高分类模型的概括能力和性能。
Chest radiography is an effective screening tool for diagnosing pulmonary diseases. In computer-aided diagnosis, extracting the relevant region of interest, i.e., isolating the lung region of each radiography image, can be an essential step towards improved performance in diagnosing pulmonary disorders. Methods: In this work, we propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations. Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets. The proposed pipeline is evaluated on Shenzhen Hospital (SH) data set for the segmentation module, and COVIDx data set for both segmentation and classification modules. Novel statistical analysis is conducted in addition to regular evaluation metrics for the segmentation module. Furthermore, the results of the optimized approach are analyzed with gradient-weighted class activation mapping (Grad-CAM) to investigate the rationale behind the classification decisions and to interpret its choices. Results and Conclusion: Different data sets, methods, and scenarios for each module of the proposed pipeline are examined for designing an optimized approach, which has achieved an accuracy of 0.946 in distinguishing abnormal CXR images (i.e., Pneumonia and COVID-19) from normal ones. Numerical and visual validations suggest that applying automated segmentation as a pre-processing step for classification improves the generalization capability and the performance of the classification models.