论文标题
配体形式:用于预测具有强大解释复合属性的图形神经网络
Ligandformer: A Graph Neural Network for Predicting Compound Property with Robust Interpretation
论文作者
论文摘要
对QSAR方法的强大而有效的解释对于用主观意见(化学家或生物学家专业知识),了解复杂的化学或生物过程机制的AI预测理由非常有用,并为制药行业的结构优化提供了启发式思想。为此,我们构建了一个基于多层自我注意的图形神经网络框架,即配体形式,用于预测具有解释的复合属性。配体形式将注意图集成了来自不同网络块的复合结构。集成的注意图反映了机器对复合结构的本地兴趣,并指示了预测的复合属性及其结构之间的关系。这项工作主要有助于三个方面:1。配体直接打开深度学习方法的黑框,提供了有关化学结构的局部预测原理。 2。配体在不同的实验回合中给出了强大的预测,从而克服了深度学习方法无处不在的预测不稳定。 3。可以推广配体形式以预测具有高性能的不同化学或生物学特性。此外,配体形式可以同时输出特定的性质评分和在结构上的可见注意力图,这可以支持研究人员研究化学或生物学特性并有效地优化结构。就准确性,鲁棒性和概括而言,我们的框架的表现优于对应的,并且可以应用于复杂的系统研究中。
Robust and efficient interpretation of QSAR methods is quite useful to validate AI prediction rationales with subjective opinion (chemist or biologist expertise), understand sophisticated chemical or biological process mechanisms, and provide heuristic ideas for structure optimization in pharmaceutical industry. For this purpose, we construct a multi-layer self-attention based Graph Neural Network framework, namely Ligandformer, for predicting compound property with interpretation. Ligandformer integrates attention maps on compound structure from different network blocks. The integrated attention map reflects the machine's local interest on compound structure, and indicates the relationship between predicted compound property and its structure. This work mainly contributes to three aspects: 1. Ligandformer directly opens the black-box of deep learning methods, providing local prediction rationales on chemical structures. 2. Ligandformer gives robust prediction in different experimental rounds, overcoming the ubiquitous prediction instability of deep learning methods. 3. Ligandformer can be generalized to predict different chemical or biological properties with high performance. Furthermore, Ligandformer can simultaneously output specific property score and visible attention map on structure, which can support researchers to investigate chemical or biological property and optimize structure efficiently. Our framework outperforms over counterparts in terms of accuracy, robustness and generalization, and can be applied in complex system study.