论文标题
詹姆斯:将职位标准化标准用多相关图嵌入和推理
JAMES: Normalizing Job Titles with Multi-Aspect Graph Embeddings and Reasoning
论文作者
论文摘要
在在线工作市场中,重要的是为各种下游任务建立定义明确的职权分类法(例如,工作建议,用户的职业分析和离职预测)。职位标题归一化(JTN)是将用户创建的非标准作业标题分类为标准化的一个清洁步骤。但是,解决JTN问题的挑战是非平凡的:(1)不同作业标题的语义相似性,(2)非归一化用户创建的工作头衔,以及(3)在现实世界中应用中的大规模和长尾工作标题。为此,我们提出了一个名为James的新颖解决方案,该解决方案构建了目标作业标题的三个独特的嵌入(即图形,上下文和句法),以有效地捕获其各种特征。我们进一步提出了一种多种共同注意机制,以认真地结合这些嵌入,并采用神经逻辑推理表示,以在推理空间中的混乱工作头衔和标准化的工作标题之间进行协作估计相似之处。为了评估詹姆斯,我们在具有超过350,000个职位的大型现实数据集中对十个竞争模型进行了全面的实验。我们的实验结果表明,James在10中的表现明显优于最佳基线,而NDCG@10分别优于17.52%。
In online job marketplaces, it is important to establish a well-defined job title taxonomy for various downstream tasks (e.g., job recommendation, users' career analysis, and turnover prediction). Job Title Normalization (JTN) is such a cleaning step to classify user-created non-standard job titles into normalized ones. However, solving the JTN problem is non-trivial with challenges: (1) semantic similarity of different job titles, (2) non-normalized user-created job titles, and (3) large-scale and long-tailed job titles in real-world applications. To this end, we propose a novel solution, named JAMES, that constructs three unique embeddings (i.e., graph, contextual, and syntactic) of a target job title to effectively capture its various traits. We further propose a multi-aspect co-attention mechanism to attentively combine these embeddings, and employ neural logical reasoning representations to collaboratively estimate similarities between messy job titles and normalized job titles in a reasoning space. To evaluate JAMES, we conduct comprehensive experiments against ten competing models on a large-scale real-world dataset with over 350,000 job titles. Our experimental results show that JAMES significantly outperforms the best baseline by 10.06% in Precision@10 and by 17.52% in NDCG@10, respectively.