论文标题

绝对坐标中受约束的多体运动学和动力学:对表示刚体旋转的三种方法的讨论

Constrained multibody kinematics and dynamics in absolute coordinates: a discussion of three approaches to representing rigid body rotation

论文作者

Kissel, A., Taves, J., Negrut, D.

论文摘要

我们将三种方法比较了与在绝对坐标中提出的约束多体动力学问题相关的差异代数方程(DAE)的三种方法。第一种方法直接与方向矩阵一起使用,因此避免了用于产生方向矩阵$ \ mathbf {a} $的通用坐标的需求。旋转矩阵属于so(3)lie矩阵组的事实,这一事实得知了这种方法。第二种方法采用Euler参数,而第三种使用Euler角度。在所有情况下,索引3 DAE问题均通过一阶隐式数值集成符解决。我们注意到$ \ mathbf {ra} $在$ \ mathbf {rε} $上的$ \ mathbf {ra} $和A 1.2-1.3倍的$ \ Mathbf {rε} $上的加速度大约是双重加速。测试与四个3D机制结合使用。 $ \ mathbf {ra} $方法的仿真速度的改进可以追溯到运动方程的更简单形式和进入数值解决方案的更简洁的雅各布人。此处所做的贡献是双重的。首先,我们提供所有在隐式集成上下文中使用时输入$ \ mathbf {ra} $公式的所有数量的一阶变化;即,运动学约束对所有较低对接头的敏感性以及约束反应力的灵敏度。其次,据我们所知,没有其他贡献可以比较$ \ mathbf {ra} $,$ \ mathbf {rp} $的解决方案效率,而在绝对坐标中构成的多机动力学问题的上下文中。

We compare three approaches to posing the index 3 set of differential algebraic equations (DAEs) associated with the constrained multibody dynamics problem formulated in absolute coordinates. The first approach works directly with the orientation matrix and therefore eschews the need for generalized coordinates used to produce the orientation matrix $ \mathbf{A} $. The approach is informed by the fact that rotation matrices belong to the SO(3) Lie matrix group. The second approach employs Euler parameters, while the third uses Euler angles. In all cases, the index 3 DAE problem is solved via a first order implicit numerical integrator. We note a roughly twofold speedup of $ \mathbf{rA} $ over $ \mathbf{rε} $, and a 1.2 -- 1.3 times speedup of $ \mathbf{rε} $ over $ \mathbf{rp} $. The tests were carried out in conjunction with four 3D mechanisms. The improvements in simulation speed of the $ \mathbf{rA} $ approach are traced back to a simpler form of the equations of motion and more concise Jacobians that enter the numerical solution. The contributions made herein are twofold. First, we provide first order variations of all the quantities that enter the $ \mathbf{rA} $ formulation when used in the context of implicit integration; i.e., sensitivity of the kinematic constraints for all lower pair joints, as well as the sensitivity of the constraint reaction forces. Second, to the best of our knowledge, there is no other contribution that compares head to head the solution efficiency of $ \mathbf{rA} $, $ \mathbf{rp} $, and $ \mathbf{rε} $ in the context of the multibody dynamics problem posed in absolute coordinates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源