论文标题
无细胞的大型MIMO具有有限的领先能力:随机几何学透视
Cell-Free Massive MIMO with Finite Fronthaul Capacity: A Stochastic Geometry Perspective
论文作者
论文摘要
在这项工作中,我们分析了无单元的大型多输入 - 元素输出系统的下行性能,并在集中式基带单元和接入点(APS)之间具有有限的容量前链路。在用户和AP位置的条件下,我们首先为网络中随机选择的用户得出可实现的速率,从而捕获有限的Fronthaul容量的效果。此外,我们介绍了两种不同类型的网络体系结构的性能分析,即传统和以用户为中心。对于传统体系结构,在网络中的所有AP提供每个用户的情况下,我们使用二项方点过程的统计属性来得出用户速率覆盖范围。对于以用户为中心的体系结构,每个用户都由指定数量的最近的AP提供服务,我们使用Poisson Point Process的统计属性来得出典型用户的速率覆盖率。此外,我们从统计学上表征了每个AP的用户数量,这是覆盖范围分析所必需的。从系统分析中,我们得出的结论是,对于传统体系结构,平均系统总和是用户数量的准共循环函数。此外,对于以用户为中心的体系结构,存在最大数量的服务AP,可最大化平均用户速率。
In this work, we analyze the downlink performance of a cell-free massive multiple-input-multiple-output system with finite capacity fronthaul links between the centralized baseband units and the access point (APs). Conditioned on the user and AP locations, we first derive an achievable rate for a randomly selected user in the network that captures the effect of finite fronthaul capacity. Further, we present the performance analysis for two different types of network architecture, namely the traditional and the user-centric. For the traditional architecture, where each user is served by all the APs in the network, we derive the user rate coverage using statistical properties of the binomial point process. For the user-centric architecture, where each user is served by a specified number of its nearest APs, we derive the rate coverage for the typical user using statistical properties of the Poisson point process. In addition, we statistically characterize the number of users per AP that is necessary for coverage analysis. From the system analyses, we conclude that for the traditional architecture the average system sum-rate is a quasi-concave function of the number of users. Further, for the user-centric architecture, there exists an optimal number of serving APs that maximizes the average user rate.