论文标题
同样的原因;大脑的不同影响
Same Cause; Different Effects in the Brain
论文作者
论文摘要
为了研究大脑中的信息处理,神经科学家在记录参与者大脑活动时操纵实验刺激。然后,他们可以使用编码模型来找出从刺激特性中预测哪个大脑“区域”(例如,感兴趣的区域,体积像素或电生理传感器)。鉴于该设置的基础假设,当刺激性能预测区域的活性时,这些特性被认为会导致该区域的活性。 近年来,研究人员使用神经网络来构建捕获复杂刺激(例如自然语言或自然图像)各种特性的表示。使用这些高维表示构建的编码模型通常能够显着预测大量皮层的活性,这表明所有这些大脑区域的活性都是由代表中捕获的刺激特性引起的。这样很自然地问:“这些不同的大脑区域的活性是由刺激特性引起的吗?”用神经科学术语,这对应于询问这些不同区域是否以相同的方式处理刺激特性。 在这里,我们提出了一个新框架,使研究人员能够询问刺激的特性是否以相同的方式影响两个大脑区域。我们使用模拟数据和两个具有复杂自然主义刺激的真实fMRI数据集,以表明我们的框架使我们能够做出这样的推断。我们的推论在两个数据集之间非常一致,表明所提出的框架是神经科学家了解如何在大脑中处理信息的有希望的新工具。
To study information processing in the brain, neuroscientists manipulate experimental stimuli while recording participant brain activity. They can then use encoding models to find out which brain "zone" (e.g. which region of interest, volume pixel or electrophysiology sensor) is predicted from the stimulus properties. Given the assumptions underlying this setup, when stimulus properties are predictive of the activity in a zone, these properties are understood to cause activity in that zone. In recent years, researchers have used neural networks to construct representations that capture the diverse properties of complex stimuli, such as natural language or natural images. Encoding models built using these high-dimensional representations are often able to significantly predict the activity in large swathes of cortex, suggesting that the activity in all these brain zones is caused by stimulus properties captured in the representation. It is then natural to ask: "Is the activity in these different brain zones caused by the stimulus properties in the same way?" In neuroscientific terms, this corresponds to asking if these different zones process the stimulus properties in the same way. Here, we propose a new framework that enables researchers to ask if the properties of a stimulus affect two brain zones in the same way. We use simulated data and two real fMRI datasets with complex naturalistic stimuli to show that our framework enables us to make such inferences. Our inferences are strikingly consistent between the two datasets, indicating that the proposed framework is a promising new tool for neuroscientists to understand how information is processed in the brain.