论文标题

QCD中的小X双对数的重新召集:包容性深弹性散射

Resummation of small-x double logarithms in QCD: inclusive deep-inelastic scattering

论文作者

Davies, J., Kom, C. -H., Moch, S., Vogt, A.

论文摘要

我们介绍了一项全面的研究,对含含的高能双对数。它们在扰动理论中的n-阶在Parton Evolutions的分裂函数和硬散射过程的系数函数中的n-thore中以Alpha_s^n ln^{2n-k} X的形式出现,并代表$ x $在口味非singlet情况下的领先校正。我们根据修改后的Bessel功能进行重新召集,以全QCD中的所有订单,最高nnll精度,并在较大的n_c限制中部分到n^3ll及以后,并提供最多五个循环的固定顺序扩展。与单个双对数在小x处是亚占主导地位的flavour-singlet部门,与单元素级alpha_s^n x^{ - 1} ln^{n-k} x bfkl贡献相比,我们在NNLL完全QCD中构建了五个循环。结果阐明了包容性的分析小X结构以固定顺序扰动理论结果,并为这些数量的当前和将来的数值和分析计算提供了重要信息。

We present a comprehensive study of high-energy double logarithms in inclusive DIS. They appear parametrically as alpha_s^n ln^{2n-k} x at the n-th order in perturbation theory in the splitting functions for the parton evolution and the coefficient functions for the hard scattering process, and represent the leading corrections at small $x$ in the flavour non-singlet case. We perform their resummation, in terms of modified Bessel functions, to all orders in full QCD up to NNLL accuracy, and partly to N^3LL and beyond in the large-n_c limit, and provide fixed-order expansions up to five loops. In the flavour-singlet sector, where these double logarithms are sub-dominant at small x compared to single-logarithmic alpha_s^n x^{-1} ln^{n-k} x BFKL contributions, we construct fixed-order expansions up to five loops at NNLL accuracy in full QCD. The results elucidate the analytic small-x structure underlying inclusive DIS results in fixed-order perturbation theory and provide important information for present and future numerical and analytic calculations of these quantities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源