论文标题

AF $ _2 $:空中图像细分的自适应重点框架

AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation

论文作者

Huang, Lin, Dong, Qiyuan, Wu, Lijun, Zhang, Jia, Bian, Jiang, Liu, Tie-Yan

论文摘要

作为一项特定的语义分割任务,空中图像分割已被广泛用于高空间分辨率(HSR)遥感图像的理解。除了一般语义分割任务面临的常见问题(例如大规模变化)外,空中图像分割还面临着一些独特的挑战,其中最关键的挑战在于前景 - 背景不平衡。最近有一些努力通过提出复杂的神经网络体系结构来解决这个问题,因为它们可用于提取信息丰富的多规模特征表示并增加对物体边界的歧视。然而,其中许多只是在临时措施中利用这些多尺度表示,但忽略了这样一个事实,即可以通过各种范围的接收场更好地识别具有各种尺寸的对象的语义含义。在本文中,我们提出了自适应焦点框架(AF $ _2 $),该框架采用了层次分割过程,并着重于使用广泛采用的神经网络体系结构生成的多尺度表示。特别是,提出了一个可学习的模块,称为自适应置信机制(ACM),以确定应使用哪种表示量表来分割不同对象。综合实验表明,AF $ _2 $与主流方法一样快地提高了三个广泛使用的空中基准的准确性。

As a specific semantic segmentation task, aerial imagery segmentation has been widely employed in high spatial resolution (HSR) remote sensing images understanding. Besides common issues (e.g. large scale variation) faced by general semantic segmentation tasks, aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance. There have been some recent efforts that attempt to address this issue by proposing sophisticated neural network architectures, since they can be used to extract informative multi-scale feature representations and increase the discrimination of object boundaries. Nevertheless, many of them merely utilize those multi-scale representations in ad-hoc measures but disregard the fact that the semantic meaning of objects with various sizes could be better identified via receptive fields of diverse ranges. In this paper, we propose Adaptive Focus Framework (AF$_2$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations generated by widely adopted neural network architectures. Particularly, a learnable module, called Adaptive Confidence Mechanism (ACM), is proposed to determine which scale of representation should be used for the segmentation of different objects. Comprehensive experiments show that AF$_2$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源